

AgriCos e-Newsletter

Open Access Multidisciplinary Monthly Online Magazine

Volume: 04 Issue: 12 December 2023

Article No: 36

Bio Control Pest Management in Tropical Fruit Crops

Shreya Maigur¹, Archana Anokhe² and Priyanshu Pawar³

¹Division of Plant Pathology, ICAR- Indian Agricultural Research Institute, New Delhi ²Scientist, Division of Entomology, ICAR- Indian Agricultural Research Institute, New Delhi ³Ph.D Scholar, Jawahar lal Nehru Krishi Vishwavidyalaya Jabalpur, Madhya Pradesh

SUMMARY

India, with its diverse climatic conditions and geographical expanse, is a treasure trove of tropical fruit crops. These tropical fruits are crowning jewel in the realm of Fruit crops. Which are a vital component of agriculture, offering a wide variety of delicious and nutritious fruits. However, they are susceptible to various pests that can significantly impact both yield and quality. Hence, a sustainable and environmental friendly solution has emerged – Biocontrol of pest. Many examples of successful biological control of pests of Fruit crops, started with Icerya purchasi Biocontrolled by Rodolia cardinalis in California in 1888. Now Many Biocontrols are used to control the Pests of tropical fruit crops, These Biocontrols are categorized into predators, parasitoids and pathogens. The primary objective is to reduce pest numbers without harming the environment or human health.

INTRODUCTION

Tropical fruits form a diverse commodity group, ranging from perennial to herbaceous varieties. The herbaceous category includes important crops like bananas, pineapples, and papayas, while the woody or perennial group encompasses various tree species, shrubs, and vines. The phenology of tropical fruit trees, including leaf growth, flowering, fruiting, and leaf shedding, is more dramatic in tropical regions compared to higher latitudes, where growth and development are largely confined to one season each year due to winter. India is the world's second-largest fruit producer and is often referred to as the "fruit basket of the world." In 2022, India produced 107.24 million metric tonnes of fruits on 7.05 million hectares of land. India leads in the production of bananas (26.45%), mangoes (including mangosteens and guavas) (43.80%), and papayas (39.30%) among fruits. Additionally, India is the largest producer of tropical fruits globally, accounting for 28% of the production. Mangoes, bananas, pomegranates, and oranges are among the major fruits exported from the country.

Bio Control of pests: Biocontrol is a natural and environmentally friendly method of pest management that relies on the ecological balance within agricultural systems. These beneficial organisms can be predators, parasitoids, pathogens. The primary objective is to reduce pest numbers without harming the environment or human health.

1. Predators: These are free living organism throughout its life, which are usually larger than its host pest(prey) and requires more than one prey to complete its life cycle. In terms of diversity and significance of biological control - the coleopteran (lady bird beetle), Neuroptera (lacewing), Hymenoptera (ants), Diptera (flies) and Hemiptera(damsel bug) are outstanding.

Fruit crop	Pest	Predator	Dose /	Reference
_			Remarks	
Citrus	Cottony Cushion	Rodolia cardinalis	Reports First	(Quezada and DeBach,
	Scale (Icerya		Biological	1973; DeBach et al.,
	purchase		Control	1971)
		Cryptochaetum icerya		
	Citrus Mealy bug	Australian ladybird beetle,	10/tree	Chacko et at., 1978,
		Cryptolaemus		van Whervin, 1968
		montrouzieri		
	Citrus Black Fly	Brumus sp, Scymnus sp.		
	Citrus scale	Chilocorus nigritus is	15 adults/tree.	
		released		
	Citrus psyllid	Coccinella		(Sadana, 1991).

AgriCos e-Newsletter (ISSN: 2582-7049)			04 (12) December 2023		
	Citrus whitefly	septumpunctata, C rependa, Chilomenes sexmaculata, Chilocorus nigritus. Cryptognatha flavescens.,			
	Citrus aphid	Verania cardoni. Menochilus sexmaculatus	@ 50 per tree.		
Mango	Mango mealy bug Mango jassids	Cryptolaemus montrouzieri Isyndus heros	@ 25 beetles per plant		
	Mango leaf webber	Carabid beetle <i>Parena</i> <i>lacticincta</i> , reduvid, Oecama sps			
	Mango Aphid Mango Hopper	Coccinellidae Mallada boninensis, Chrysopa lacciperda.			
Guava	GuavaspirallingwhiteflyGuava scale	ReleaseChrysoperlacarnea predatorsMicroterys kotinskyiAzyaluteipes,Cryptolaemusmontrouzieri	at 10000/ha	Bennett and Hughes, 1959	
Banana	Banana Weevil	Myrmicineant(TetramoriumguinenseandPheiodolemegacephala)HisteridbeetlePlaesiusjauanus(introduced intoFijiin 1913-1914)Trichopoda pennipes		Castineiras and Ponce, 1991 Davis and Krauss	
Papaya	Papaya mealy bug	Chrysopa sp. and Chilocorus cacti		González et al.,1999	

Parasitoids

These are the organism often of same size as its host pest, kills its host. It requires only one host for development into a free-living adult. And parasitic in immature stages but adult is free-living. Hymenoptera And Diptera are most important Orders Consisting of Parasitoids.

Fruit crop	Pest	Parasitoid	Dose/Remarks	Reference	
Mango	Fruit fly	Wasps like Encarsia			
		formosa and			
		Diachasmimorpha			
		longicaudata			
		Opius oophilus		van den Bosch and	
				Haramoto, 1953	
		Biosteres longicaudatus		Syed et al.(1970)	
		(Ashmead), <i>Dhirinus</i>			
		giffardii Silvestri and			
		Spalangia grotiusi Girault			
	Fruit-piercing moths	Telenomus spp.	Egg Parasitoid		
	leaf webber	Hormiusa sps			

AgriCos e-	Newsletter (ISSN: 25	04 (12) December 2023		
Citrus	Shoot psyllid	Tetrastichus radiates		
	Citrus butterfly	<i>Trichogramma</i> <i>evanescene,</i> Telenomus sp.	Egg parasitoid	
		<i>Dostatrix papilionis</i> , Brachymeria sp.	Larval parasitoid	
		Pterolus sp	Pupal parasitoid	
		Coccidoxenoides peregrinus		Mani, 1994a
		Leptomastix dactylopii		Krishnamoorthy and Singh, 1987
	Citrus Black fly	Eretmocerus serius		Bedford and Thomas, 1965
		Encarsia opulenta		Browning et al., 1995
Papaya	Papaya mealy bug	Acerophagus papayae, Anagyrus loecki sp.		González et al., 1999
Pomegranat e	Pomegranate fruit borer	Trichogramma chilonis	Egg parasitoid at 1 lakh/ha	
		Brachymeria euploeae	Larval parasitoid	
Banana	Banana weevil	Trichogramma wasps	Egg parasitoid	
Guava	Guava Tea mosquito bug	mermithid, <i>Agamerimis</i> paradecaudata.	Nymph Parasitoid	

3. Pathogens

Microorganisms like fungi, bacteria and Viruses that infect and kill pests.

Category	Fruit	Pest	Pathogen	Dose/ Remarks	Reference
	crop				
Fungi	Mango	Fruit fly	Beauveria bassiana and		
			Metarhizium anisopliae		
		Mango Hopper	Lecanicillium lecanii		
		Mango leaf	Paecilomyces farinosus		
		webber			
		Mango giant	Beauveria bassiana		
		scale			
	Guava	Fruit fly	Beauveria bassiana	1x109	
				spores/ml	
	Papaya	Mealy bug	Lecanicillium lecanii		
Bacteria	Papaya	fruit borer	Bacillus thuringiensis		
Nematode		Fruitfly	Steinernema feltiae and		
			Heterorhabditis		
			bacteriophora		
	Banana	Banana weevil	Steinernema and		Schmitt, 1993
			Heterorhabditis		

CONCLUSION:

Pest Management by Biocontrols in Tropical fruit crops is a promising and sustainable approach that aligns with the principles of eco-friendly agriculture. As research and technology continue to advance, biocontrol is poised to play an even more significant role in ensuring the future of tropical fruit crop cultivation. Embracing biocontrol is not just a choice; it's a step toward a more sustainable and resilient agricultural future. Currently, very few people in tropical countries are researching these areas, and very few specialists receive adequate financial

AgriCos e-Newsletter (ISSN: 2582-7049)

04 (12) December 2023

support. While major emphasis has been given to staple crops (i.e. rice and cassava), with the exception of banana, little or no emphasis has been given to fruit crops.

REFERENCES

Horticultural statistics at a glance 2018

https://nhb.gov.in/statistics/Publication/Horticulture%20Statistics%20at%20a%20Glance-2018.pdf https://nhb.gov.in/Statistics.aspx?enc=WkegdyuHokljEtehnJoq0KWLU79sOQCy+W4MfOk01GFOWQSEvtp9tN HHoiv3p49g - Area production Statistics https://agricoop.gov.in/en/PublicationReports - (DAC & FW)