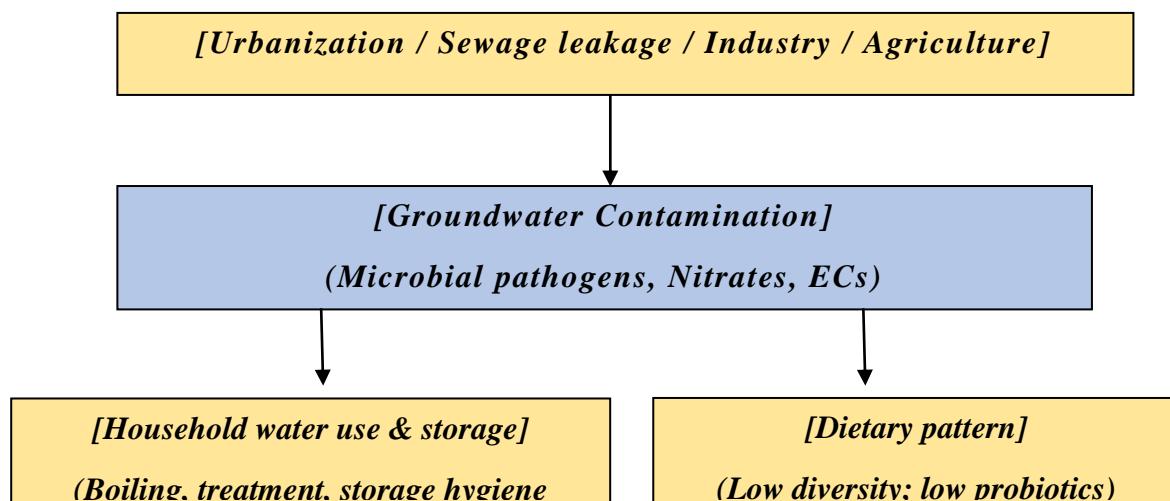


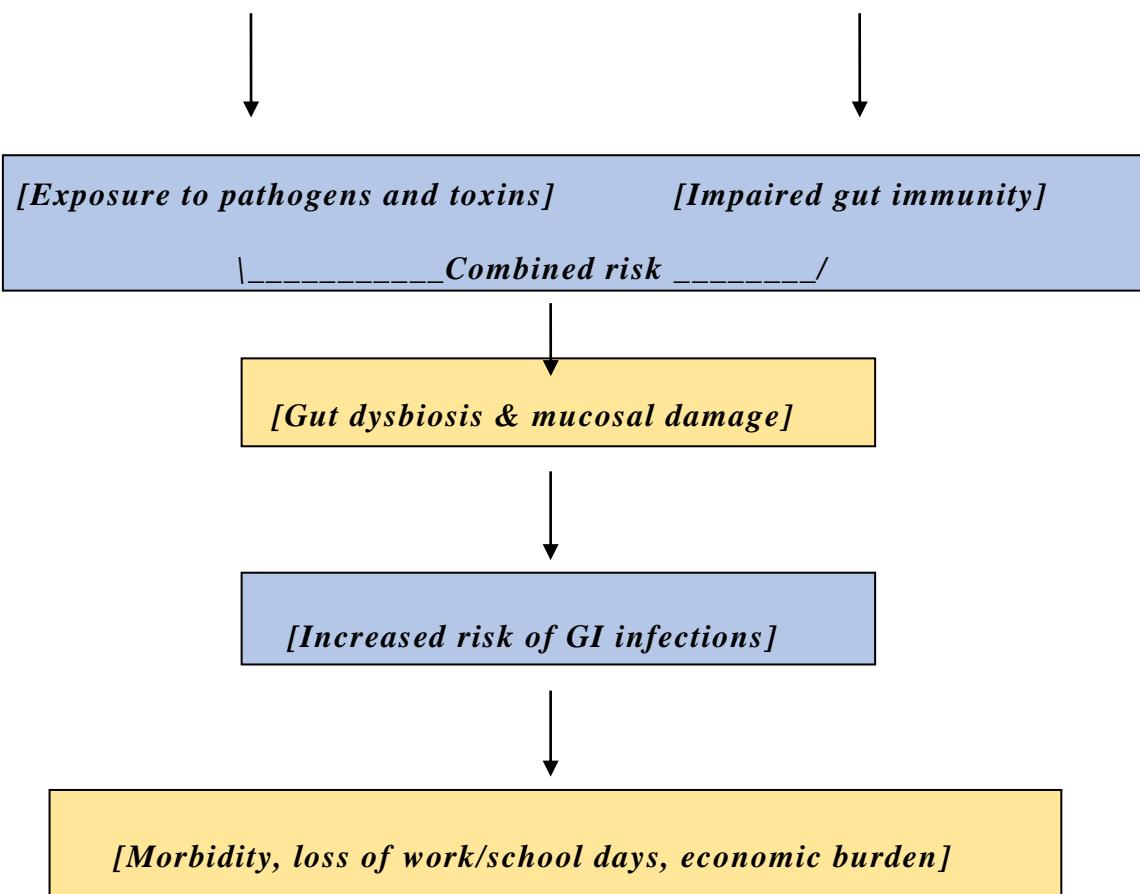
Integrated Water-Safety and Nutrition Interventions to Reduce Gastrointestinal Morbidity in Semi-Urban India

Arni Ahmed Noori¹ and Anjali Juyal²

¹Research Scholar, FSN department, CCAS, MPUAT

²Guest Faculty, RMCS department, CCAS, MPUAT, India


SUMMARY


Semi-urban India faces a combined challenge of groundwater contamination and limited dietary diversity, both of which heighten vulnerability to gastrointestinal illness. Microbial pollutants, nitrates, heavy metals, and emerging contaminants including pharmaceutical residues, polyfluoroalkyl substances, and microplastics are increasingly detected in groundwater but remain insufficiently monitored. At the same time, cereal-heavy diets low in fruits, vegetables, legumes, and fermented foods weaken gut resilience by reducing fiber intake, microbial diversity, and micronutrient status. This article integrates environmental and nutrition evidence to propose a practical framework linking water quality, diet, and gut health. It highlights feasible household and community water-safety technologies, nutrition strategies that enhance gut integrity and microbial balance, and essential behavior-change actions. The paper also outlines policy measures needed to expand monitoring of emerging contaminants and strengthen regulatory and community systems. Overall, a phased, multi-sectoral approach that improves both water safety and dietary quality offers a viable pathway to reducing gastrointestinal disease burden in semi-urban Indian communities.

INTRODUCTION

The access to safe drinking water and adequate nutrition form the foundation of public health. In semi-urban India, many communities depend primarily on groundwater for drinking purposes, yet this vital resource faces mounting threats. Microbial contamination, agricultural runoff, industrial waste, leaking sanitation infrastructure, and emerging pollutants (including pharmaceutical residues, PFAS compounds, and microplastics) increasingly compromise groundwater quality. These contaminants can damage intestinal health, disrupt the gut microbiome, and when combined with inadequate nutrition, significantly heighten communities' susceptibility to gastrointestinal infections. Dietary patterns in semi-urban India often lack sufficient variety. Many people consume cereal-dominated diets with insufficient amounts of fruits, vegetables, legumes, and fermented foods that supply essential fiber, micronutrients, and beneficial probiotic bacteria crucial for maintaining gut health and immune function. This limited dietary diversity frequently results in micronutrient deficiencies (particularly vitamin A, zinc, and iron) which weaken the body's defenses against intestinal pathogens. When contaminated water is used for drinking, food preparation, or washing fresh produce, the combined impact of environmental contamination and nutritional inadequacy creates a synergistic pattern of reinforcing health risks that fuel recurring gastrointestinal disease.

Synergy: How water and diet increase GI risk?

Technical interventions: Household to Community

Household and community water-safety measures need to work together to reduce everyday exposure to both common and emerging contaminants. At the household level, boiling remains the most dependable and accessible way to destroy pathogens, while simple options like solar disinfection using clear bottles placed in sunlight for several hours offer a low-cost alternative for microbial reduction, especially in areas with limited fuel. Low-maintenance ceramic and biosand filters help remove particles and many microbes through regular filtration, though they are less effective against hard-to-remove contaminants such as pharmaceuticals or PFAS, for which technologies like reverse osmosis, nanofiltration, and activated carbon are more suitable despite being costly and producing brine waste that requires safe disposal. At a broader scale, community systems such as centralized or village-level RO plants, water kiosks that publish regular test results, and decentralized wastewater treatment plants can significantly reduce exposure for larger populations and often prove more economical per person than individual home units. Rainwater harvesting can supplement or replace contaminated groundwater, reduce pressure on aquifers, and provide a safer source during peak pollution seasons, especially when combined with basic first-flush and filtration steps. Sustaining these community systems requires policy backing, operational funding, preventive maintenance, and local involvement to ensure reliability. Strengthening monitoring and detection is equally important; routine water testing needs to expand beyond traditional microbial checks to include emerging contaminants, while monthly microbial assessments and periodic testing for nitrates and heavy metals should become standard practice. Introducing sentinel monitoring sites for PFAS, pharmaceutical residues, and microplastics can help track trends and guide regional interventions. Digital tools (such as mobile apps, village dashboards, and automated alerts) can make water-quality information more transparent, help communities report problems quickly, and encourage safer choices in storage, treatment, and daily water use.

Nutritional interventions: restoring gut resilience

Category	Food Items	Nutritional Role / Prebiotic Benefit
Soluble Fiber Foods	Oats, barley, banana, guava, citrus fruits, carrot, methi (fenugreek) seeds	Form viscous gel; nourish beneficial gut bacteria; reduce inflammation; support SCFA (short-chain fatty acid) production
Resistant Starch	Cooled rice, cooled potatoes, green (unripe)	Provide resistant starch for colonic fermentation; enhance microbial balance and butyrate production

Sources	bananas	
Prebiotic Vegetables	Onions, garlic, leeks, asparagus	Rich in inulin & fructooligosaccharides (FOS); enhance growth of Bifidobacteria and other beneficial microbes
Millets	Foxtail millet, finger millet (ragi), pearl millet (bajra)	High in fermentable fiber; support slow digestion; promote SCFA synthesis
Legumes	Chickpeas, rajma (kidney beans), whole moong, matar (peas)	Contain galacto-oligosaccharides (GOS); stimulate beneficial gut flora and improve gut motility

Table 1: High-Fiber & Prebiotic-Rich Foods for Gut Barrier Strengthening

Category	Food Sources	Health Impact / Role
Herbs & Spices	Tulsi, turmeric, ginger	Strong antioxidants; reduce oxidative stress; protect intestinal lining from contaminant-induced inflammation
Fruits (Polyphenol-Rich)	Jamun, amla, pomegranate	High in flavonoids & tannins; improve microbial diversity; reduce inflammation
Beverages	Green tea, black tea	Catechins & polyphenols that reduce gut inflammation and oxidative load
Leafy Greens	Spinach, moringa leaves	Rich in phenolic compounds; promote antioxidant defense and support microbiome health

Table 2: Polyphenol-Rich Foods for Anti-Inflammatory & Antioxidant Effects

Food Item	Serving Size	Gut Health Benefit
Curd	100–150 mL/day	Replenishes beneficial bacteria; reduces diarrhoeal episodes
Buttermilk (Chhaas)	150–200 mL/day	Soothes gut; improves digestion; probiotic activity
Lassi	100–150 mL	Restores hydration and gut flora
Idli/Dosa Batter (Fermented)	2–3 pieces	Provides natural probiotics; easy to digest
Homemade Lacto-Fermented Pickles	1–2 teaspoons	Source of lactic acid bacteria
Kanji (Fermented Beet/Carrot Drink)	150 mL	Enhances microbial diversity

Table 3: Daily Low-Cost Probiotic Foods

Combination	Why It Works (Benefit)
Curd + banana	Probiotic + resistant starch (prebiotic) boosts beneficial bacteria
Buttermilk + roasted jeera + coriander	Aids digestion; increases microbial activity
Idli/Dosa + Sambar (lentils)	Fermented + fiber-rich legumes create a synbiotic effect
Curd rice + grated carrot	Provides cooling effect + probiotic + prebiotic fiber

Table 4: Synbiotic Combinations (Probiotic + Prebiotic Together)

Nutrient	Food Sources	Role in Gut Health & Contaminant Protection
Zinc	Whole grains, chickpeas, pumpkin seeds, groundnuts, eggs	Supports mucosal repair; boosts immunity; reduces diarrhoeal duration
Vitamin A / Beta-Carotene	Papaya, mango, pumpkin, carrots, leafy greens	Essential for epithelial barrier strength and immunity
Iron + Vitamin C (Combination)	Dal + lemon; sprouts + amla; leafy greens + citrus	Improves iron absorption; prevents anemia; strengthens immune response
Calcium & Magnesium	Milk, curd, ragi, sesame seeds, leafy greens	Reduce absorption of heavy metals like lead & cadmium

Table 5: Micronutrient-Focused Strategies for Immunity & Gut Repair

Practice	Recommendation	Reason / Benefit
Cooking vegetables	Cook thoroughly; avoid raw salads	Kills pathogens; prevents waterborne infections
Washing produce	Use boiled/filtered water	Prevents contamination through raw food
Washing grains/pulses	Wash with treated water before soaking	Removes microbes and chemical residues
Food freshness	Prefer freshly cooked food; avoid leftovers	Reduces bacterial growth
Avoid high-risk street foods	Golgappa, raw chutneys, cut fruits	High contamination probability

Table 6: Dietary Safety Guidelines During Water Contamination Events

Intervention	Activities	Outcome
Nutrition Education Modules (Anganwadis, SHGs, Schools)	Safe water identification, fermentation demos, DDS-improving recipes	Behavior change; improved dietary diversity
Kitchen Garden Promotion	Growing spinach, methi, moringa, tomatoes, carrots, lemons	Access to fresh micronutrients year-round
MDM & ICDS Menu Diversification	Millet khichdi, curd, vegetables, sprouts, jaggery-groundnut chikki	Improved nutrient intake among children & mothers

Table 7 Community Nutrition Interventions

Category	Food Items	Benefit
Calcium-rich foods	Milk, curd, ragi, sesame seeds	Reduce lead & cadmium absorption
Iron-rich foods	Leafy greens, jaggery, lentils, sprouts	Reduce arsenic & lead uptake
Antioxidant foods (Vit C & E)	Citrus, amla, tomatoes, nuts, seeds	Reduce oxidative stress from nitrates & heavy metals
Natural binding foods	Moringa leaves, apple peel, citrus pectin	Bind toxins & reduce absorption
Hydration & Electrolytes	ORS, coconut water, dal soup, lemon water (boiled)	Prevent dehydration; support recovery

Table 8: Advanced Nutrition for Reducing Contaminant Absorption

Common groundwater contaminants in semi-urban India, sources, health impacts, and removability

Contaminant (type)	Common sources in semi-urban India	Health impacts	Removal / mitigation (feasibility)
Faecal bacteria (E. coli, coliforms)	Open drains, leaking septic tanks, contaminated wells	Acute diarrhoea, enteric infections	Boiling, SODIS, ceramic/biosand filters, UV; high feasibility.
Nitrates	Fertilizer leaching, sewage	Methemoglobinemia (infants), long-term risk	Source control; blending; RO (costly).
Heavy metals (As, Pb, Cd)	Industrial discharge, geogenic leaching	Chronic toxicity, organ damage	Ion exchange, adsorption, RO; moderate feasibility with cost.
Pharmaceuticals & personal care residues	Sewage, improper disposal	Endocrine disruption, low-dose chronic effects	Advanced oxidation, activated carbon, RO; limited feasibility for households.
PFAS (PFOA/PFOS)	Industrial effluents, firefighting foams	Endocrine, metabolic and developmental effects	RO/NF + activated carbon; high cost, policy needed.
Microplastics	Plastic waste breakdown, microbeads in products	Gut inflammation (experimental evidence), vector for pollutants	Source reduction (ban microbeads), filtration (size-dependent); monitoring gaps.

Table 9: Common groundwater contaminants in semi-urban India, sources, health impacts, and removability**Implementation pathways: a stepwise program**

A practical implementation pathway can be organized as a phased programme that builds from rapid assessments to long-term monitoring and policy change. The first step focuses on quick baseline testing over the initial months, assessing microbial and chemical quality in community wells while also looking at dietary diversity in homes and schools to understand existing vulnerabilities. This is followed by a phase that prioritizes immediate household measures, encouraging safe practices such as boiling, solar disinfection, and hygienic storage of drinking water, supported through simple educational materials shared by Anganwadi centres, schools, and local health workers. As the programme progresses, attention shifts to strengthening community-level infrastructure by installing shared RO units or water kiosks in areas with high contamination risk, alongside expanding rainwater harvesting structures and improving sanitation systems to reduce the sources of pollution entering groundwater. Nutrition interventions run in parallel, working to enhance dietary diversity by upgrading school meals, promoting kitchen gardens, and training families in preparing probiotic and fermented foods that support gut health. The final phase emphasises systematic monitoring and policy development, including setting up sentinel sites for tracking emerging contaminants such as pharmaceuticals and PFAS, generating regular water-quality reports, and preparing policy briefs that can help guide the introduction of phased and evidence-based regulatory standards to protect public health over the long term.

Limitations and challenges

The issue of emerging contaminants in groundwater is shaped by several interconnected limitations and challenges. In India, monitoring systems still do not routinely measure important pollutants such as pharmaceutical residues, per- and polyfluoroalkyl substances, or microplastics, leading to uneven and insufficient data that make it difficult to design focused solutions. Many advanced treatment options, including reverse osmosis, nanofiltration, and activated carbon, remain costly and energy-demanding, which creates inequality because low-income households are less able to access safe water and environmental concerns like brine disposal persist. Efforts to improve hygiene, food safety, water handling, and diet often face cultural and behavioural obstacles, and even though community groups and school programmes are promising, achieving long-lasting change is still difficult. Clear links between exposure to these contaminants and gastrointestinal health remain hard to establish because long-term studies and detailed exposure assessments are limited. Governance also adds complexity, as responsibilities for water quality, sanitation, waste management, and public health are divided among multiple agencies, making coordinated policies and monitoring systems harder to implement.

CONCLUSION

Semi-urban India faces a dual challenge in which contaminated groundwater and nutritionally poor diets together weaken gut health and increase gastrointestinal illness. Strengthening water safety through household and community-level treatment, alongside improving dietary diversity and promoting fermented and probiotic foods, can substantially lower disease risk. Achieving sustained progress requires better data on emerging contaminants, affordable infrastructure for safe drinking water, and culturally appropriate behavior-change strategies. An integrated, phased approach that links monitoring, community water systems, nutrition interventions, and stronger regulation, offers a practical and effective pathway to protect vulnerable populations and reduce the ongoing public health burden.

REFERENCES

Akosile, S. I., Ajibade, F. O., Lasisi, K. H., Ajibade, T. F., Adewumi, J. R., Babatola, J. O. and Oguntuase, A. M. (2020). Performance evaluation of locally produced ceramic filters for household water treatment. *Water Practice & Technology*, 15(2): 428–438

Brauns, B., Chandra, S., Civil, W., Lapworth, D. J., MacDonald, A. M., McKenzie, A. A., Read, D. S., Sekhar, M., Singer, A. C., Thankachan, A. and Tipper, H. J. (2024). Presence of emerging organic contaminants and microbial indicators in surface water and groundwater in urban India. *Environmental pollution* (Barking, Essex: 1987), 362: 124983

Chandel, N., Maile, A., Shrivastava, S., Verma, A. K. and Thakur, V. (2024). Establishment and perturbation of human gut microbiome: common trends and variations between Indian and global populations. *Gut Microbiome*, 5: e8

Dhakan, D. B., Maji, A., Sharma, A. K., Saxena, R., Pulikkan, J., Grace, T., Gomez, A., Scaria, J., Amato, K. R. and Sharma, V. K. (2019). The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. *GigaScience*, 8(3): giz004

García-Gil, Á., García-Muñoz, R. A., McGuigan, K. G. and Marugán, J. (2021). Solar Water Disinfection to Produce Safe Drinking Water: A Review of Parameters, Enhancements, and Modelling Approaches to Make SODIS Faster and Safer. *Molecules (Basel, Switzerland)*, 26: (11), 3431

Gautam, A., Poopalarajah, R., Ahmad, A. R., Rana, B. N., Denekew, T. W., Ahn, N., Utenova, L., Kunwor, Y. S., Bhandari, N. N. and Jha, A. R. (2025). Ecological factors that drive microbial communities in culturally diverse fermented foods. *BMC microbiology*, 25(1): 655

Gopal, K. S. U. (2025). *Endocrine disruptors in India's drinking water*. ORF Online.

Olayanju, A., Mellor, D., Khatri, Y. and Pickles, N. (2023). The efficacy of fermented foods in the treatment and management of diarrhoeal diseases: A systematic review and meta-analysis. *Nutrition & Health*, 29(1): 71–83

Sackaria, M. and Elango, L. (2020). Organic micropollutants in groundwater of India-A review. *Water environment research : a research publication of the Water Environment Federation*, 92(4): 504–523

Saha, J., Chouhan, P., Malik, N. I., Ghosh, T., Das, P., Shahid, M., Ahmed, F. and Tang, K. (2022). Effects of Dietary Diversity on Growth Outcomes of Children Aged 6 to 23 Months in India: Evidence from National Family and Health Survey. *Nutrients*, 15(1): 159

Sridhar, D. and Parimalarenganayaki, S. (2025). Review on urban groundwater pollution an Indian perspective: Sources, analysis, and management strategies. *Desalination and Water Treatment*, 324: 101453

Tripathi, P., Varma, K., Srivastava, V., Dlamini, N. S. and Jha, P. K. (2025). Heavy metal contamination and associated health risk assessment in groundwater of Mirzapur, Uttar Pradesh. *Frontiers in Water*, 7

Yadav, S. S., Matela, H., Panchal, P. and Menon, K. (2024). Household food insecurity, dietary diversity with undernutrition among children younger than five years in Indian subcontinent-a narrative review. *The Lancet regional health. Southeast Asia*, 26: 100426