

Empowering the Medicinal Plant Economy: The Role of Technology and Rural Infrastructure: Strengthening India's MAP Sector through Technology and Rural Infrastructure

Mahesh M. Kadam and Rushikesh N. Bhise

CSIR- Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, India

SUMMARY

India, with more than 7,500 medicinal plant species and a rich legacy of traditional knowledge, holds immense potential to lead the global Medicinal and Aromatic Plants (MAPs) industry. However, despite growing global demand and an expanding herbal market projected to surpass USD 300 billion by 2030, India's share in international MAP trade remains limited. This article examines the critical role of rural infrastructure, modern technology, and decentralized processing ecosystems in strengthening India's MAP value chain. It highlights key gaps in post-harvest management, distillation and extraction technologies, quality testing, cold storage, and digital traceability that restrict value addition at the farm and FPO levels. Drawing upon global examples from Bulgaria, Turkey, Vietnam, and Nepal, as well as evidence from CSIR-CIMAP's Aroma Mission interventions, the paper underscores how technology-enabled rural enterprises can significantly enhance farmer income and export competitiveness. It argues for a national-level mission focused on MAP-based infrastructure, quality assurance, and entrepreneurship development to transform growers into value-chain partners. Strengthening rural MAP clusters through scientific drying, modern distillation units, digital quality systems, and processing hubs can unlock sustainable livelihoods, empower rural communities, and position India as a global leader in natural products and green exports.

INTRODUCTION

As the global economy steadily embraces natural, plant-based healthcare solutions, the Medicinal and Aromatic Plants (MAPs) sector has emerged as one of the most promising opportunities for India. With a biodiversity repository of more than 7,500 medicinal species and centuries of traditional knowledge, the country stands at the forefront of a booming global herbal industry expected to cross USD 300 billion by 2030. Yet, despite this enormous potential, India continues to occupy a modest share of international MAP trade. One of the fundamental reasons is not a lack of markets—but the absence of adequate technology, processing infrastructure, machinery, and rural value-chain systems that can transform raw biomass into high-value global products. Globally, MAP value chains thrive when integrated with modern machinery, scientific post-harvest systems, and decentralized processing hubs. Countries like Bulgaria (lavender), Madagascar (vanilla), Vietnam (cinnamon), and Turkey (rose oil) have built world-class reputations not merely from cultivation but through robust technology-enabled ecosystems. These nations invested early in distillation technologies, quality testing laboratories, packaging systems, and export-compliant processing chains—ensuring that farmers are not just growers but meaningful contributors to global supply networks. In contrast, many Indian MAP growers remain dependent on external traders and distant industrial processors, resulting in fragmented supply chains and limited value capture.

The critical challenge begins with post-harvest infrastructure, which continues to be inadequate across rural MAP clusters. Scientific literature repeatedly emphasizes that improper drying, inefficient storage, and outdated distillation systems reduce the phytochemical content of MAP crops by as much as 30–50% (FAO, 2022). Sun-drying, still common in several regions, exposes herbs to dust, moisture, and microbial contamination, significantly lowering the marketability of products. Studies conducted by CSIR-CIMAP demonstrate that controlled dehydration using tray dryers or solar-hybrid dryers can increase essential oil retention by 25%, improve color and aroma stability, and enhance export readiness. The lesson is clear: technology is not an optional upgrade—it is a prerequisite for competitiveness.

Extraction and distillation technology represent another critical weakness. Essential oils, resins, and bioactive extracts constitute the most valuable segment of MAP trade. Yet, only a fraction of India's MAP-growing villages have access to modern stainless-steel steam distillation units or solvent-free extraction plants. In many cases, farmers continue using traditional bhattis, which yield inconsistent oil quality, consume excessive fuel, and fail to meet global standards. By comparison, countries like France and Bulgaria have standardized

community distillation centers, enabling small growers to produce world-class lavender and rose oils. The success of CSIR's Aroma Mission proves that when efficient distillation units are brought directly to growers, incomes rise significantly—sometimes by 300–400%.

Furthermore, India faces a processing infrastructure gap at the FPO, cooperative, and rural-enterprise levels. A significant volume of MAP raw material still travels hundreds of kilometers for primary or secondary processing, leading to quality degradation and increased costs. Establishing decentralized Rural Extraction and Processing Centres (REPCs) equipped with milling, extraction, packaging, and testing facilities is essential to reduce wastage and increase value addition at the source. International examples from Nepal's mountain herb clusters and Turkey's rose cooperatives show that such centers allow rural communities to participate directly in global value chains rather than remaining mere suppliers of raw biomass.

Another dimension that demands urgent attention is digital and quality infrastructure, which is increasingly a non-negotiable element in global MAP trade. Importing countries now require batch-wise traceability, QR-coded provenance, pesticide residue testing, phytochemical profiling, and sustainability certification. Research from OECD and WHO-GACP indicates that traceability enhances both market confidence and pricing advantages. India's MAP exporters frequently face rejections due to lack of standardized testing facilities, inconsistent quality parameters, or inadequate documentation. Establishing village-level digital traceability systems—using simple mobile apps, QR codes, and blockchain pilots—can significantly enhance India's global credibility.

Cold chains, storage infrastructure, and moisture-controlled warehouses form another critical technological gap. Many MAP crops—tulsi, ashwagandha, kalmegh, and rose petals—lose potency within days if stored improperly. This is particularly true for species rich in volatile compounds. According to the National Medicinal Plants Board (NMPB), nearly 18–22% of MAP produce suffers quality loss due to inadequate storage systems. Investing in rural cold rooms, humidity-controlled storage, and MAP-specific packaging materials can extend shelf life and reduce contamination.

The role of rural machinery-based entrepreneurship cannot be overstated. Modern MAP economies flourish when farmers evolve into processors, bottlers, and brand owners rather than exporters of raw biomass. Small-scale distillation units, herbal tea processing lines, pulverisers, capsule-filling machines, and eco-friendly packaging units can transform ordinary growers into rural entrepreneurs. Evidence from CSIR-CIMAP's field projects indicates that when an FPO owns a distillation unit or dryer, member incomes increase substantially compared to selling raw leaves or roots. A thriving ecosystem of MAP-based rural enterprises can generate employment, promote women's entrepreneurship, and stimulate local economies.

Global literature reinforces that value addition and technology adoption are more critical to farmer income than cultivation area (NMPB, 2023; FAO, 2022). Small farms in Europe often earn more from MAPs than large farms in developing countries because they integrate machinery, quality controls, and value-chain partnerships. India must adopt a similar trajectory through targeted investments, policy incentives, and public–private partnerships.

Looking ahead, establishing a National Mission on MAP Technology & Infrastructure could be transformational. Such a mission can focus on:

- Modern distillation and extraction centers in each MAP cluster
- Solar and hybrid dryers for farmer groups
- Rural cold storage and MAP-specific packaging units
- Quality testing laboratories at district or block levels
- Digital traceability systems for export compliance
- Incentives for machinery under MSME/Agri-Infra schemes
- Training programs on machinery operation, certification, and business planning

MAPs offer India a powerful opportunity to lead the global natural products value chain. But this leadership will not come from cultivation alone. It will depend on technology, science, rural infrastructure, and the ability to convert raw herbs into high-quality, globally competitive products. If India invests strategically, the MAP sector can become a cornerstone of rural prosperity, green exports, and sustainable livelihoods.

REFERENCES

National Medicinal Plants Board (NMPB), Annual Report, 2023.
CSIR-CIMAP, Value Chain Studies, 2023–24.

FAO (2022). Global Trends in Medicinal and Aromatic Plants Trade.

OECD (2021). Science, Technology and Innovation Outlook.

WHO (2018). Good Agricultural and Collection Practices (GACP) for MAPs.

Future Market Insights (2024). Global Herbal Products Market Report.

GIZ (2022). MAP Cluster Development in South Asia.

CSIR Aroma Mission (Phase I & II). (2017–2024). Technical Bulletins, Progress Reports, and Impact Assessments by CSIR-CIMAP and collaborating CSIR laboratories.

National Horticulture Board (NHB) (2023 Post-Harvest Management and Cold-Chain Infrastructure Status Report.